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Numerical simulation of bubble rising in viscous liquid
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Abstract

An improved numerical algorithm for front tracking method is developed to simulate the rising of a bubble in quiescent
viscous liquid due to buoyancy. In the new numerical algorithm, volume correction is introduced to conserve the bubble
volume while tracking the bubble’s rising and deforming, and volume flux conservation based SIMPLE algorithm is
adopted to solve the Navier–Stokes equation for fluid flow using finite volume method. The new front tracking algorithm
is validated systematically by simulating single bubble rising and deforming in quiescent viscous liquid under different flow
regimes. The simulation results are compared with the experimental measurement in terms of terminal bubble shape and
velocity. The simulation results demonstrate that the new algorithm is robust in the flow regimes with larger ranges of Rey-
nolds number (Re < 200), Bond number (Bo < 200), density ratio (ql/qb < 1000) and viscosity ratio (ll/lb < 500). The new
front tracking algorithm is also applied to investigate bubble rising and deforming behaviour in the various flow regimes of
‘‘air bubble/water solution’’ system under effects of Reynolds number, Bond number, density ratio, viscosity ratio as well
as the bubble initial shape, which have been explored previously by experiments. The predicted bubble shape and terminal
velocity agree well with the experimental results. Hence, the new modelling algorithm expands the conventional front
tracking method to more realistic and wider applications.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Multi-fluid systems play an important role in many natural and industrial processes such as combustion/
chemical reaction, petroleum refining and boiling. The rising of single bubble in a viscous liquid due to buoy-
ancy is one of typical multi-fluid systems. A fundamental understanding of the bubble rising physics is essen-
tial in various practical applications, ranging from the rise of steam bubble in boiler tubes to gas bubbles in oil
well. However, a comprehensive knowledge of the flow behaviour and mechanism of such multi-fluid systems
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in full flow regimes is still lacking, although a number of experimental, theoretical analysis and numerical
studies have addressed this problem.

Early studies on the rise of a bubble in an inviscid or a viscous fluid were reported in the works of Hartu-
nian and Sears [11], Walters and Davidson [28,29], Wegener and Parlange [30], and Bhaga and Weber [1].
However, our understanding on bubble rise and deformation is still limited to a few flow regimes only, due
to the difficulties in experiments. It is rather difficult to measure, without any interference, the flow pattern
and pressure distribution within a bubble and its surrounding liquid while it is rising and deforming. As a
result, approximate theoretical solutions have been derived in the limit of very small bubble deformations
(low Bond number) for either high [16] or low [26] Reynolds numbers, where the bubble shape is relatively
stable. In the analysis work of Davies and Taylor [8], the rising speed of a spherical-cap bubble was related
to the radius/curvature of the bubble at the forward stagnation point. Hence, they took the overall spheri-
cal-cap as a priori shape rather than being determined as part of solution. Considering the difficulties in exper-
imental and theoretical investigations, numerical simulations provide an effective alternative approach to
attain a better insight into the bubble rising behaviour, the development of bubble shape evolution and the
flow behaviour in the viscous liquid.

Correct simulation of the flow behaviour in a multi-fluid system depends upon the ability of numerical
model to satisfactorily characterise the flow mechanism for each fluid phase as well as the interactions between
them. In recent years, significant progress has been made in understanding and modelling complex single-
phase flows by advanced flow visualisation technique, detail flow field measurements and sophisticated numer-
ical simulations. In principle, the multi-fluid systems could also be numerically modelled using the same gov-
erning-equations (Navier–Stokes equations and mass conservation equation) for single-phase flow. However,
the sharp interface in multi-fluid system may lead to discontinuities of fluid properties such as density and vis-
cosity in the flow field. In addition, the existence of surface tension would induce a pressure jump across the
interface as well. Hence, some numerical schemes for single-phase flow simulation cannot be directly extended
for multiphase flows. All these facts present difficulties in the numerical modelling of the multi-fluid systems. If
the numerical method is of lower order accuracy, excessive numerical diffusion will smear the sharpness of the
front. On the other hand, a higher order scheme may lead to numerical oscillations near the front that may
propagate further to other parts in the solution domain. To overcome these obstacles in tracking the sharp
interface for the multi-phase flows, various numerical methods, such as VOF method [12], level set method
[18], front tracking method [6,7,9,10,27] and surface fitted method [2,13,23] have been proposed. Detail
reviews on these numerical methods have been reported in the works of Van Sint Annaland and Kuipers
[25] and Scardovelli and Zaleski [24].

In the present work, the state of art front tracking method, a hybrid approach of the front capturing
and tracking technique proposed by Tryggvason et al. [27], was examined. In this method, a stationary,
fixed grid is used for the fluid flow, and a set of adaptive elements is used to mark the interface. One
set of Navier–Stokes equations is solved in the whole computational domain by treating the different
phases as one fluid with variable material properties. The fluid properties such as density and viscosity
are calculated according to the position of the interface. Hence, this method could avoid numerical diffu-
sion, and capture sharp interfaces. Interfacial source terms such as surface tension are computed on the
front and then transferred to the fixed grid using a d (dirac-delta) function on the interface between the
phases. The position of the interface is advected explicitly using the velocity interpolated from the flow
filed on the background grid.

The front tracking method has been applied to solve various interfacial flow problems [27]. It has been
reported by Bunner and Tryggvason [3] that the capability of conventional algorithm is limited to lower den-
sity ratios, lower Reynolds numbers and lower Bond numbers. A further extension of this method is proposed
in the present work to make it applicable to wider flow regimes. In the traditional approach, the governing
Navier–Stokes equation is discretized using finite-difference scheme and solved using projection method. In
the present paper, the unsteady Navier–Stokes equation is discretized by the conventional finite volume
method and solved numerically using a modified SIMPLE method [19]. The interface is tracked explicitly with
the advection velocity that is interpolated from the fixed background grid. The front mesh size is adapted
through coarsening and refining, when the front moves and the front mesh is distorted. Because of the explicit
front tracking approach and front mesh adaptation the conservation of the volume inside the front is not
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guaranteed. Hence, a volume correction scheme is applied in this paper to conserve the volume enclosed inside
the front mesh.

As a benchmarking test, the improved algorithm is used to model single air bubble rising in viscous
liquid, which has been treated widely as typical cases to validate numerical methods for interfacial flows
in the past works of Raymond and Rosant [22], Chen et al. [4] and Ohta et al. [17]. However, most of pre-
vious simulations are performed under conditions of lower density ratio, the simulation results are just val-
idated against experimental observations about bubble shape under some typical flow regimes only [4,17].
There are only few quantitative comparisons about bubble terminal velocity, e.g. in the work of Koebe
et al. [14]. In this paper, the improved front tracking method is used to systematically investigate single
air bubble rising in water solutions within wider flow regimes. The simulation results are compared with
experimental observations in the aspects of terminal bubble shape, terminal velocity and wake flow pattern.
Good agreements are obtained in most flow regimes. In addition, it is found that the initial bubble shape
may have significant effects on final appearance of the bubble in the flow regimes with intermediate Rey-
nolds and Bound numbers around 200.

The rest of the paper is arranged as follows. Details of the governing equations, non-dimensional param-
eters and the numerical method are described in Section 2. The numerical simulation results are presented and
compared with available experimental data in Section 3. Further discussions on the mechanism of rising bub-
ble’s deformation in viscous liquid under the effects of Reynolds and Bond numbers, initial bubble shape, den-
sity and viscosity ratios, are also presented in the later part of Section 3. Finally, the findings and conclusions
drawn from this study are summarised in Section 4.

2. Mathematical formulation and numerical method

2.1. Governing equations

For a multi-fluid system if the two fluids can be considered as incompressible, the mass and stress balances
on the interface between two fluids may be described as follows [24,5]. Firstly, the normal velocity in each fluid
phase on the interface should be continuous, and can be expressed as
½u� � n ¼ 0; ð1Þ

in which the square bracket represents the jump across the interface, u is the fluid velocity and n represents the
unit normal vector to the interface. Secondly, a stress balance on the interface may be expressed as
½�p þ lðruþrTuÞ� � n ¼ rjn; ð2Þ
½lðruþrTuÞ� � t ¼ 0; ð3Þ
where p is the pressure in the fluid domain, r the surface tension, j the curvature of the interface, t the unit
tangent vector of the interface, and l the fluid viscosity.

In this study, we investigate the rising of single bubble in a quiescent liquid. It is normally reasonable to
treat the liquid phase as incompressible fluid. With the assumption of an isothermal system and neglecting
gas density variation caused by the liquid hydraulic pressure, the gas phase of the bubble can also be treated
as incompressible fluid. Hence, the mass conservation equation on the whole domain (both fluid phases and
the interface) can be expressed in form of volume flux conservation:
r � u ¼ 0: ð4Þ

The Navier–Stokes equation, governing the momentum balance in each fluid phase and on the interface, can
be expressed as
oðquÞ
ot
þr � quu ¼ �rp þr � ½lðruþrTuÞ� þ rjndðx� xf Þ þ ðq� qlÞg; ð5Þ
where, d(x � xf) is a delta function that is one at the interface only and zero elsewhere, g the gravitational accel-
eration. And subscript f refers the front or interface, q the density of fluid, and ql the density of liquid phase.
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We introduce the following dimensionless characteristic variables:
x� ¼ x
D

; u� ¼ u

ðgDÞ1=2
; s� ¼ t

D1=2g�1=2
; q� ¼ q

ql

; p� ¼ p
qlgD

; l� ¼ l
ll

; j� ¼ j

D�1
:

where D is the effective diameter of a bubble, which is defined as D = (6Vb/p)1/3, and Vb is the bubble volume.
The subscripts l and b stand for the liquid and gas bubble phases, respectively. So, the non-dimensionalised
Navier–Stokes equation may be re-expressed as
oðquÞ
ot
þr � quu ¼ �rp þ 1

Re
r � ½lðruþrTuÞ� þ 1

Bo
jndðx� xf Þ þ ðq� 1Þg; ð6Þ
in which the superscript * is omitted for convenience. The non-dimensional Reynolds number and Bond num-
ber (also known as Eotvos number) for the simulations in this paper are defined as following:
Re� ¼ qlg
1=2D3=2

ll

; Bo� ¼ qlgD2

r
:

Based on the above formulation, the problem of a bubble rise in liquid could be characterised by four non-
dimensional parameters, namely, the ratios of density (ql/qb) and viscosity (ll/lb) of two fluids, Reynolds
number and Bond number. In literature, another dimensionless parameter called Morton number is also used
to represent the fluid property [1,15]:
M ¼ gl4
l

qlr3
¼ Bo3

Re4
:

Most experimental results on bubble rising in liquid are presented using the Reynolds number (Re) that was
defined using the bubble terminal rising velocity (U1) measured:
Re ¼ qlDU1
ll

:

2.2. Treatment of the discontinuities across the front

To solve the Navier–Stokes equations over a fixed grid, the fluid properties (density and viscosity) dis-
tribution in the whole solution domain are required. Although the density and viscosity of each fluid is con-
stant as the fluid is assumed to be incompressible, the abrupt jump across the interface of multi-fluid system
may lead to either excessive numerical diffusion or numerical instability. The novelty of the front tracking
method proposed by Tryggvason et al. [27] is that the interface is considered to have a finite thickness of the
same order of the mesh size instead of zero thickness. In the transition zone near the interface, the fluid
properties change smoothly and continuously from the value on one side of the interface to the value on
the other side. The artificial thickness of the interface depends on the grid size, and is kept constant during
the computation. Hence, this method does not have numerical diffusion across the interface. The field dis-
tributions b(x, t) of material properties over the whole solution domain may be reconstructed using an indi-
cator function I(x, t), which has the value of one in the bubble gas phase and zero in the liquid phase at a
given time t:
bðx; tÞ ¼ bl þ ðbb � blÞ � Iðx; tÞ; ð7Þ

in which b stands for either fluid density or viscosity. The indicator function can be written in the form of an
integral over the whole domain X(t) with the interface C(t):
Iðx; tÞ ¼
Z

XðtÞ
dðx� x0Þdv0; ð8Þ
where d(x � x 0) is a delta function that has a value of one where x 0 = x and zero every where else. Taking the
gradient of the indicator function and transforming the volume integral into an integral over interface yields:
rI ¼
Z

CðtÞ
ndðx� x0Þds; ð9Þ
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where n is the unit normal vector on the interface. Taking the divergence of Eq. (9) leads to [27]:
r2I ¼ r �
Z

CðtÞ
ndðx� x0Þds: ð10Þ
Thus, by solving the above Poisson equation in which the right hand side is a function of the known inter-
face position at time t, the indicator function I(x, t) can be reconstructed. Once the indicator function is cal-
culated, the fluid property distribution field can be calculated according to Eq. (7).

A distribution function D(x) is used to approximate the delta function, and it defines the fraction of the
interface quantity (such as density and viscosity difference of two phases, and surface tension) distributed
to nearby grid point across the artificial thickness of the front. Thus, the sharp jump of the indicator function
on the interface is spread among the nearby grids. This generates a gradient field (G = $I), which is none-zero
within the finite thickness interface, but otherwise zero everywhere else. The discretized form of the gradient
function G is given as follows [27]:
GðxÞ ¼
X

f

Dðx� xf Þnf Dsf ; ð11Þ
where nf is the unit normal vector at an interface element with an area of Dsf whose centroid is xf. In this study
the following distribution function by Peskin [20,21] is used for a two-dimensional grid system:
Dðx� xf Þ ¼
ð4hÞ�2 Q2

i¼1

1þ cos p
2h jx� xf j
� �� �

; if jx� xf j < 2h

0; otherwise:

8<
: ð12Þ
where h is the grid size.
Using the same approach, the surface tension on the front can also be easily distributed to the fixed grid as

[27]:
F stðxÞ ¼
X

f

Dðx� xf Þrknf : ð13Þ
2.3. Numerical method

A projection method was used to solve the Navier–Stokes equations in the previous works of Tryggvason
et al. [27]. They used a fixed, regular, staggered grid and discretized the momentum equations using second-
order-centred difference scheme for the spatial variables and explicit second-order time integration. In their
method, the front is advected first, and followed by density update. Once the density is updated, the velocity
can be computed in the following two steps. In the first step of the projection scheme, the effects of pressure are
ignored in the momentum equation, and the flow velocity is projected as follows:
qnþ1u� � qnun

Dt
¼ �r � qnunun þr � lðrun þrTunÞ þ Fst; ð14Þ
where Dt is the time step size, the superscript n and n + 1 refer to the current and the next time step,
respectively.

Then, a correction step is performed to include the pressure gradient:
qnþ1unþ1 � qnþ1u�

Dt
¼ �rp: ð15Þ
With the incompressible condition ($ Æ un+1 = 0), the pressure can be obtained by solving the following non-
separable elliptic Poisson equation:
r 1

qnþ1
� rp ¼ 1

Dt
r � u�: ð16Þ
A number of difficulties have been reported in the literature while solving the above pressure equation. For
example, a large density ratio may lead to a problem in convergence [27,3].
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In order to overcome the difficulties in solving the pressure equation, an alternative approach is imple-
mented in the present work. Similar to that of Tryggvason et al. [27], we also use a fixed, regular, staggered
grid, but discretize the momentum equations using finite volume method. As the front is advected explicitly,
the fluid property field and surface tension are updated subsequently. Then, the coupling between flow velocity
and pressure is updated by solving the momentum equations and continuity equation using SIMPLE scheme
[19] instead of projection method. The simulation process is more robust even in case of large density ratio
because of the semi-implicit solving approach:
qnþ1unþ1 � qnun

Dt
þr � qnþ1unþ1uuþ1 ¼ �rpnþ1 þr � lðrunþ1 þrTunþ1Þ þ Fnþ1

st : ð17Þ
Similar to the conventional approach, the above equation can be solved iteratively, together with the con-
tinuity equation, using the volume flux conserved SIMPLE algorithm [19]. In a multi-fluid system, due to the
density jump over the interface, the mass flux conservation in the control volume crossing the front interface is
not valid. Instead, the volume flux conservation is adopted here to modify the SIMPLE algorithm. The diver-
gence of velocity field over the whole solution domain will be kept at zero, as long as both liquid and gas can
be reasonably treated as incompressible fluids. Based on this assumption, SIMPLE algorithm is used to cal-
culate the correction value of pressure and velocity after solving the momentum equation as follows.

In discretized form, the momentum equation can be expressed as the following:
apU�p ¼
X

an;pU�n;p þ Sp � BrP �p; ð18Þ
in which n indicates the neighbouring point surrounding the centre point p, and the coefficient an,p involves the
flow properties of convection, diffusion and geometrical property of the control volume. Sp refers the source
term and B the coefficient for the pressure gradient term. Details about these coefficients can be obtained in the
work of Patankar [19].

Improved pressure field ðP ��p Þ and velocity field ðU��p Þ can be obtained by adding the correction terms
ðU0p; P 0pÞ to the values used in Eq. (18) based on calculation of U�p or assumption of P �p:
U��p ¼ U�p þU0p; P ��p ¼ P �p þ P 0p: ð19Þ
Substituting the above equation into Eq. (18), we have the relationship about correction velocity ðU0pÞ and
correction pressure ðP 0pÞ as follows:
U0p ¼
X

an;pU0n;p=ap � B=ap � rP 0p: ð20Þ
Applying incompressible fluid condition to the improved velocity field (r �U��p ¼ 0Þ, the velocity correction
(U 0) should satisfy the following condition:
r �U0 ¼ �r �U�: ð21Þ

By taking divergence to the both sides of Eq. (20), ignoring the first term (with high order) on the right hand

side of Eq. (20) and substituting it into Eq. (21), the pressure correction can be obtained by solving the fol-
lowing equation:
r � ½ðB=apÞrP 0� ¼ r �U�: ð22Þ

Based on the pressure correction, the velocity correction can also be derived according to Eq. (20). The

updated velocity and pressure are then used as the guessed field for the next iteration for solving the momen-
tum Eq. (18). Such iterations will be repeated until the convergence of both momentum and continuity equa-
tions. Compared with the projection method, the SIMPLE algorithm avoids directly solving the pressure
equation, which enhances the numerical robustness for the cases with large density/viscosity jumps across
the two-fluid interface [4].

2.4. Front tracking

After the velocity field is calculated on the fixed background grid, the velocity of the moving front needs to
be interpolated from the velocity at the fixed grid to ensure the front moves at the same velocity as the sur-
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rounding fluids. In Section 2.3, the distribution function used to spread the fluid property jump to the fixed
grids near the interface was discussed. Similarly, this function can also be used to interpolate field variables
from the background grid to the front using the following equation:
uf ¼
X

Dðxf � xÞuðxÞ: ð23Þ
Then, the front is advected along the normal direction in a Lagrangian fashion:
xnþ1
f � xn

f ¼ Dt uf : ð24Þ
After the front is advected to the new position, the mesh size and quality on the front may be deteriorated due
to the deformation of the front. For example, some element points may have moved closer resulting in very
small elements. On the contrary, some elements may become larger. The element resolution on the interface
has a strong effect on the information exchange between the front and the fixed background grids that in turn
affects the accuracy of the simulation results. Hence, front mesh adaptation has to be performed to improve
the front mesh quality, but the conservation of bubble volume may be scarified due to the mesh refining and
coarsening. To conserver the bubble volume, the front position is corrected by the following equation:
xf � x�f ¼ ðV � V �Þ=S� � n�; ð25Þ
where xf, x�f are the final corrected front position and the current front position respectively. V is the theoret-
ical/initial bubble volume. V*, S*, n* are the bubble volume, surface area and front outward unit normal vector
for the current bubble, respectively.

In the present work, an axisymmetric problem is studied. The bubble front is marked by a set of connected
line elements. The element adaptation is based on the upper and lower limits of the element length. One back-
ground grid cell normally contains 2–4 front line elements. Similarly, the topology change of the front should
also be examined by modifying the element connectivity.
2.5. Solution procedure

With appropriate initial conditions for the fluid flow and interface shape, the solution algorithm proceeds
iteratively through the following steps:

(1) Using the fluid velocity field (un) and the interface position ðxn
f Þ, the moving velocity of the front marker

points ðun
f Þ is computed using Eq. (23).

(2) Using the estimated normal interface velocity, the front is advected to the new position ðxnþ1
f Þ. Subse-

quently, the elements, representing the front, are examined for adaptation, topology change, and are cor-
rected for conserving the volume enclosed inside the front.

(3) At the new interface positions, the redistribution of the interface property is performed with the recon-
structed indicator function Iðxnþ1

f Þ. Hence, the new fluid property filed such as density (qn+1), viscosity
(ln+1), as well as the surface tension ðFnþ1

st Þ, are obtained.
(4) With appropriate wall boundary conditions, the momentum equation and mass continuity equation can

be solved implicitly using the modified SIMPLE algorithm. This leads to update fluid velocity (un+1) and
pressure (pn+1).

(5) Repeat the solution steps from (1) to (4) for the next time step calculation.

3. Results and discussion

3.1. Experimental observations and modelling strategy

Previous experimental studies on the rising and deforming of single bubble in quiescent liquid have been
reported in the literature [5,1,22]. The bubble shapes vary greatly in different flow regimes as a function of
the non-dimensional parameters such as Bond number, Reynolds number and Morton number. The terminal



Fig. 1. The regime map of experimental observed rising bubble shape in liquids [1]: S, Spherical; OE, oblate ellipsoid; OED, oblate
ellipsoidal (disk-like and wobbling); OEC, Oblate ellipsoidal cap; SCC, Spherical cap with closed, steady wake; SCO, spherical cap with
open, unsteady wake; SKS, skirted with smooth, steady skirt; SKW, skirted with wavy, unsteady skirt.
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shapes of single rising bubble under a range of Reynolds and Bound numbers were observed and reported in
the work by Bhaga and Weber [1] as shown in Fig. 1. Generally, small bubbles, which have low Reynolds or
Bond number (Re < 1 or Bo < 1), rise in a steady fashion and maintain the spherical shape. The shape of larger
bubbles, with intermediate Reynolds and Bond numbers (1 < Re < 100 and 1 < Bo < 100), are affected signif-
icantly by the flow conditions. Various bubble shapes (oblate ellipsoid, disk-like, oblate ellipsoidal cap, skirt
bubble, and spherical-cap) have been found in various flow regimes by the experimental investigations. In spite
of the difference in shapes, the bubbles rise steadily in the liquid along a straight path. With further increase of
the Reynolds number (100 < Re < 500), the bubble shape may become toroidal in the high Bond number
(100 < Bo < 500) regime; spherical-cap in intermediate Bond number regime (30 < Bo < 100) and oblate ellip-
soid in the low Bond number regime (1 < Bo < 30). As the bubble size increases further, turbulent wake devel-
ops behind the bubble that leads to unsteady bubble motion. The bubble may rise in a wobbly path, oscillate
about a mean shape and even break up or coalesce. In general, the rising bubbles have axisymmetric shapes
when the Reynolds and Bond numbers are not too higher (Re < 200, Bo < 200) within the range indicated by
the dot lines in Fig. 1.

Based on the experimental observations, the single bubble rising in quiescent liquid could be simulated
using the front tracking method in an axisymmetric co-ordinate system within certain flow regimes that will
produce axisymmetric bubbles. The simulation domain is illustrated in Fig. 2. The solution domain size in the
radial direction should be large enough so that the boundary effects on bubble rising can be ignored in the
simulation, and the bubble rising can be reasonably assumed as in an infinite quiescent liquid. The effect of
solution domain size in the radial direction on the final bubble position and shape is shown in Fig. 3 under
the simulation conditions of Bo* = 116, Re* = 13.95, ql/qb = 1000 and ll/lb = 100. It is clearly shown that
the boundary effect is negligible when the radial size of the solution domain is about four times of the bubble



Fig. 2. The schematic diagram of the solution domain for the numerical simulation.

Fig. 3. Effect of solution domain size (with radial radius of R1 = 3.0; R2 = 4.0; R3 = 4.8 times of initial bubble diameter) on the bubble
terminal shapes and position at s* = 10.
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diameter, which is then adopted in this paper. The solution domain size in the axial direction is about twelve
times of the bubble diameter. The ideal spherical bubble is located initially on the symmetric axis at two bub-
ble diameters above the bottom. Both liquid and bubble are assumed to be stationary at the initial state.

In this simulation, a uniform fine background mesh was adopted to solve the Navier–Stokes equation. The
mesh sensitivity analysis was performed by simulating the bubble rising the under same condition (Bo* = 116,
Re* = 13.95, ql/qb = 1000 and ll/lb = 100) using different sized background mesh. Five different mesh sizes of



Fig. 4. Effect of mesh sizes on the simulation results (a) bubble rising velocity; (b) the bubble terminal shape and position at s* = 10.
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M1 (120 · 40), M2 (180 · 60), M3 (240 · 80), M4 (300 · 100) and (360 · 120) were applied for the simulations.
The effects of mesh size on predicted bubble rinsing velocity and terminal bubble shape are shown in Fig. 4.
When the background mesh is coarse, about ten grids across the bubble (M1), although the initial bubble ris-
ing velocity is well predicted with similar accuracy as those with the finer meshes (M4, M5), there are signif-
icant fluctuations in bubble rising velocity prediction when it is approaching the steady state, and the mean
value is also under predicted. When the mesh is finer (M4 and M5), the predicted bubble rising velocity is more
stable. The fluctuation is so smaller compared to the mean value, and hence it is negligible. The predicted bub-
ble rising velocity and bubble will not have significant changes when the mesh finer than M4. Hence, the sim-
ulation results reported in this paper is based on background mesh M4, and the bubble is meshed with about
twenty-five grids.

Since the mesh for the bubble front is advected explicitly, and is adapted when distorted, the bubble volume
inside the front mesh cannot be guaranteed. In addition, the interpolation algorithm to get the moving speed
of the interface and numerical truncation error from the fluid property discontinuity across the interface may
also lead to the unphysical variation of bubble volume from its physical value in the simulations. Hence, a
volume correction scheme is adopted in the paper to ensure that the bubble volume will conserve during
the simulation. Under the simulation conditions of Bo* = 116, Re* = 13.95, ql/qb = 1000 and ll/lb = 100, it



Fig. 5a. Variation of volume correction ration with simulation time.

Fig. 5b. Effect of volume correction on the bubble terminal shape and position at s* = 10.
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can be seen from Fig. 5a that the bubble volume correction ratio is about 2.0E�5 at each simulation step.
Moreover, this unphysical volume change, although small in each time step, may accumulate during the long
simulation. The longer the simulation performs, the larger the error will be accumulated. And, it will affect the
final simulation accuracy. The effects of volume correction scheme on the simulation results are illustrated in
Fig. 5b by comparing the simulation predicted final bubble positions and shapes with and without volume
correction. In case of no volume correction, the bubble volume shrinks about 12% after 5000 time steps sim-
ulation compared with the initial value. The predicted bubble rising speed without volume correction is also
smaller than that with volume correction. The effects of volume correction on the final simulation results may
have the same level of importance as those of the background mesh and domain size as shown in Figs. 3 and 4.
Although the volume correction method proposed here is not derived directly from the principles of flow phys-
ics, it is a simple and easy way to correct the primary results obtained from front tracking method for com-
plying with the physical observation at each time step, and avoiding the error accumulation during the long
simulation of transient problem. The simulation results after adopting the volume correction also have better
agreement with the experimental data as discussed in Section 3.2.



Fig. 6. The predicted bubble shapes as a function of Reynolds and Bond numbers. The ratios of density and viscosity are set to be
ql/qb = 1000 and ll/lb = 100, respectively.

780 J. Hua, J. Lou / Journal of Computational Physics 222 (2007) 769–795
3.2. Bubble shape and rising velocity

The predicted bubble shapes in a wide range of Reynolds and Bond numbers are summarised in Fig. 6. In
the regimes of either low Reynolds or Bond numbers (Re* < 1 or Bo* < 1), the bubbles remain spherical while
they are rising in the liquid. With a slight increase in Reynolds number (Re* = 5), the bubble shape still
remains spherical for low Bond number, where surface tension is higher. On the other end of high Bond num-
bers, the bubble bottom becomes flat or slightly dimpled. With the further increases in either Reynolds number
(5 < Re* < 20) or Bond number (0.5 < Bo* < 20), bubbles of elliptic/oblate ellipsoid shapes are observed. With
further increase in Reynolds number (50 < Re* < 100) and Bond number (20 < Bo* < 100), the bubble shapes
range from highly deformed elliptical-cap at lower Reynolds number regime to the spherical-cap bubble at
higher Reynolds numbers (Re* > 100). As the bond number increases further (100 < Bo* < 200), skirt bubbles
are formed at higher Reynolds numbers (50 < Re* < 200). When the Bond number is increased to the range of
100 < Bo* < 200 and 100 < Re* < 200, toroidal bubbles are observed. From the simulation results presented
here, it can be concluded the current modelling method is robust enough to reasonably predict the various
bubble shapes under wider flow regimes.

Besides, detail comparison of the bubble shapes, terminal velocity and wake flow pattern is also necessary
to quantitatively understand the accuracy of the predictions. Figs. 7 and 8 compare the terminal bubble shapes
obtained from experiments [1] and simulations under a number of experimental test conditions, and Fig. 9
compares the bubble wake flow patterns. The simulation results about predicted bubble shapes shown in
Fig. 6 show that the bubble base is dimpled or indented at the intermediate Reynolds number
(5 < Re* < 100) and relatively high Bond number (20 < Bo* < 50). The indentation is also clearly visible in
bubble photographs shown in cases from B1 to B4, where the upper face the indentation may be seen near
the axis of bubbles. At the rim of bubble, the different refractive indices of the gas and the liquid prevent
us from seeing how the indentation joins the outer surface of the bubble. If taken this effect into consideration,
the simulation predicted terminal bubble shapes agree well with experimental observation [1] for most study
cases. In the experiments, the visual observation at lower part of bubbles indicate a rounded lower edge for
lower Reynolds numbers, and the edge becomes sharper as Reynolds number increases. The simulation results
also clearly show this trend as illustrated in Figs. 7 and 8.



Fig. 7. Comparison of terminal bubble shapes observed in experiments [1] and predicted in simulation under difference conditions
(A1–A8) of various Reynolds, Morton and Bond numbers.
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However, the simulation predicted bubble shapes for the study case A6 and B8 are totally different
from those observed in experiments [1]. In the experiments a spherical cap bubble with open wake is
observed, instead of a toroidal bubble as predicted by simulations. This difference is believed to be caused
by the assumption of initial bubble shape as sphere in the simulation. In the following section, we will
present more detail discussion on the effects of initial bubble shape on the terminal bubble shape
evolution.

The existence of a closed toroidal wake has been observed in experiments by Bhaga and Weber [1] through
the flow visualisation using H2 tracers. The wake flow circulation patterns predicted by the simulation agree
well with the observations in experiments as shown in Fig. 9. The wake circulation within the bubble base
indentation is clearly shown in the case W3 by the photograph, where the trace track disappears behind
the rim of the bubble. The similar wake circulation pattern is revealed in the simulation. In fact, the simula-
tions show that a secondary wake circulation occurs just behind the bubble rim. This may be the reason why
the bubble images for the test case W1, W2 and W3 have shown some bright spots at the lower outside of bubble
rim. This secondary circulation in the skirt bubble wake becomes much obvious in the simulation case W8. The



Fig. 8. Comparison of terminal bubble shapes observed in experiments [1] and predicted in simulation under difference conditions (B1–B8)
of various Reynolds and Bond numbers.
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image of the skirt bubble wake W8 does show a large bright spot just underneath the bubble. As the bubble
size increases (with the Reynolds number increasing), the wake volume increases as well, and the wake seems
to be torn away from the bubble itself. In this case, the secondary wake circulation disappears, and the bubble
base indentation becomes smaller.

The terminal bubble velocity is another important indicator to quantitatively evaluate the difference
between the experimental data and simulation results. Based on the parameters given in the experiments,
the characteristic parameters (Re*,Bo*,ql/qb, ll/lb) are derived for the simulations, which predict the terminal
bubble rising velocity ðU �1Þ. Actually, based on this dimensionless terminal velocity, the dimensional terminal
bubble velocity U1 can be calculated as U �1 � gD1=2, and the dimensional terminal bubble velocity based Rey-
nolds number (Re,c) predicted in simulation can be calculated as Re; c ¼ Re� � U �1. The comparison of the
Reynolds numbers for the experiment and simulation cases is listed in Table 1. The results from simulations
agree with those of experiments very well within 10% difference.

Most experiments reported by Bhaga and Weber [1] focus on cases with Bond number higher than 20.
On the other hand, the experimental work by Raymond and Rosant [22] focus on the single bubble rising
behaviour with lower Bond number less than 20. Hence, the both above experimental results are used here
to validate the simulation predictions for a wider Bond number range. Table 2 lists the parameters for var-
ious simulations for the experimental test cases by Raymond and Rosant [22]. Figs. 10 and 11 present the



Fig. 9. Comparison of terminal bubble wake observed in experiments [1] and predicted in simulation under difference conditions (W1–W8)
of various Reynolds, Morton and Bond numbers.
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comparisons of bubble terminal velocity and bubble aspect ratios, respectively, between simulations and
experiments with different liquid properties and bubble size. Generally, the simulations make good predic-
tions on bubble terminal velocity and shape when the Morton number (Mo) is larger than 1.0 · 10�4 or
bubble size is smaller than 5.0 mm. As the bubble becomes larger or the liquid Morton number becomes
smaller, the bubble may rise wobbly, and the axisymmetric assumption of bubble shape is not valid. In this
situation, a three dimensional model is needed to predict the bubble velocity and shape instead of the axi-
symmetric model used in this study.

Compared to previous experimental studies by Bhaga and Weber [1] and Raymond and Rosant [22] on the
rising bubble shapes in liquid under different flow regimes, the predicted bubble shape and terminal rising



Table 1
Comparison of bubble terminal velocity (in terms of Reynolds number) observed in experiments [1] and predicted in simulations

Test Cases Experiment Simulation jRe� Re; cj
Re

� 100
Re Re* U* Re, c = U* · Re*

A1 0.078 0.979 0.072 0.0705 9.63
A2 0.232 1.671 0.126 0.211 9.05
A3 55.300 79.880 0.663 52.960 4.23
A4 7.770 15.240 0.551 8.397 8.07
A5 94.000 134.6 0.659 88.701 5.63
A7 18.300 30.830 0.581 17.912 2.12
A8 30.300 49.72 0.602 29.931 1.22
B1 2.470 6.546 0.354 2.317 6.18
B2 3.570 8.748 0.414 3.621 1.45
B3 7.160 13.95 0.502 7.002 2.19
B4 13.300 23.06 0.571 13.167 0.99
B5 20.400 33.02 0.602 19.878 2.56
B6 42.200 62.36 0.634 39.536 6.31
B7 94.000 135.4 0.66 89.364 4.93

Table 2a
The physical properties of fluid used in the series experiments [22] and the simulations in the present study

Series Experiment Simulation

Viscosity (ll) (Pa S) Density (ql) (kg/m�3) Surface tension (r) (N/m) Mo l* (lb/ll) q* (qb/ql)

S1 0.687 1250 0.063 7.0 2.68 · 10�05 9.42 · 10�4

S3 0.242 1230 0.063 0.11 7.61 · 10�05 9.57 · 10�4

S5 0.0733 1205 0.064 9.0 · 10�4 2.51 · 10�4 9.89 · 10�4

S6 0.0422 1190 0.064 1.0 · 10�4 4.37 · 10�4 9.77 · 10�4

Table 2b
The simulation parameters for the rising of different sized bubbles in the series fluids

Bubble diameter (m) S1 S3 S5 S6

Re* Bo* Re* Bo* Re* Bo* Re* Bo*

0.001 0.180 0.194 0.502 0.191 1.625 0.184 2.788 0.182
0.003 0.935 1.750 2.610 1.722 8.445 1.660 14.491 1.639
0.005 2.012 4.86 5.616 4.783 18.172 4.612 31.181 4.555
0.007 3.334 9.527 9.303 9.375 30.103 9.041 51.652 8.928
0.009 4.860 15.750 13.563 15.498 43.886 14.945
0.011 6.567 23.527 18.326 23.151 59.299 22.326
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velocity using the present modelling approach are in reasonable agreement. Most of the previous numerical
studies on bubble rise in liquids are limited to certain regimes. For example, in the work of [27], the bubble
rise was simulated in the regimes of low Reynolds or low Bond numbers. The present work extends its capa-
bility to simulate the bubble rise and deformation for a wider flow regime of the realistic ‘‘air bubble/water
solution’’ two-fluid flow system.

3.3. Effect of initial bubble shape

Most previous research efforts on simulation [4,25] focused on studying the terminal velocity and shape
of bubble rising in quiescent liquid. However, the effect of initial bubble shape on the bubble evolution
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Fig. 11. Comparison of terminal bubble shape aspect ratio predicted by simulations with experimental observations [22].
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and terminal velocity is not well studied [17]. Fig. 12 shows the bubble shape evolution history from the
different initial bubble shape with different aspect ratios under the flow condition of Re* = 13.95,
Bo* = 116, ql/qb = 1000 and ll/lb = 100 (case B3 in Section 3.2). Under such conditions, the terminal bub-
bles are quite similar even though the initial bubble shapes are different. From the difference of final bub-
ble positions, it can be concluded that the bubble rising velocity are affected by different initial bubble
shape. Fig. 13 depicts the variations of the bubble rising velocity with time. It is observed that the initial
bubble with higher aspect ration (H/W) has higher initial rising velocity due to lower flow resistance
drag. When the bubble approaches the terminal shape, its rising velocity also reaches its steady terminal
value.



Fig. 12. The evolution of the terminal bubble shape at time interval of Ds* = 1 under the same conditions of Bo* = 116, Re* = 13.95,
ql/qb = 1000 and ll/lb = 100, but different initial shapes in aspect ratios of (a) H/W = 0.59, (b) H/W = 1.00 and (c) H/W = 1.31.

Fig. 13. The predicted bubble rising velocity with time under the same conditions of Bo* = 116, Re* = 13.95, ql/qb = 1000 and
ll/lb = 100, but different initial shapes in aspect ratios of H/W = 0.59, H/W = 1.00 and H/W = 1.31.
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Fig. 14 shows the predicted bubble shape evolution history from different initial shapes under the flow con-
ditions of Re* = 206.3, Bo* = 116, ql/qb = 1000 and ll/lb = 100 (case B8 in Section 3.2). Unlike the case of
lower Re*, the initial bubble shapes have significant effect on the final bubble shape development in this flow
regime. The spherical cap bubble is to be formed when the initial bubble shape aspect ratio is lower, and toroi-
dal bubble is expected when the initial bubble shape aspect ratio is higher. The temporal evolution of bubble
shape, velocity field, flow speed distribution and pressure field is shown in Figs. 15 and 16, respectively, with
initial bubble aspect ratio (H/W) of 0.59 and 1.31. The plots are generated basing on the reference frame
located on the top stagnation point of the bubble.



Fig. 14. The evolution of the terminal bubble shape at time interval of Ds* = 1 under the same conditions of Bo* = 116, Re* = 206.3,
ql/qb = 1000 and ll/lb = 100, but different initial bubble shapes in aspect ratios of (a) H/W = 0.59, (b) H/W = 0.85, (c) H/W = 1.00 and
(d) H/W = 1.31.
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The shape evolution mechanism of rising bubble in a viscous liquid is demonstrated in Figs. 15 and 16.
The contour plots of non-dimensional flow velocity distribution are drawn in twenty levels form 0 to 1.5, and
the contour plots of non-dimensional pressure field also in twenty levels from �0.5 to 0.5. When a bubble is
merged in the liquid, due to the density difference between bubble and liquid (ql > qb), the hydraulic pressure
difference across the bubble leads to the buoyancy force acting on bubble that stimulates an upward bubble
motion in the viscous liquid (as shown in Figs. 15 and 16 at s* = 0.5). The bubble will accelerate as long as
the buoyancy force is greater than the resistance drag by the surrounding liquid. As a result, the fluid flow in
the liquid is established in the region surrounding the bubble. This leads to a high pressure gradient at the
bottom surface of the bubble as shown in Fig. 16 (s* = 1.0,1.5). This high-pressure gradient also induces an
upward rising liquid jet underneath the bubble (refer to Fig. 16 (s* = 1.0)). The strength of this liquid jet
depends upon the difference between the buoyancy force (characterised by the bubble size and density dif-
ference between two fluids) and the viscous drag (characterised by bubble shape and fluid viscosity). As the
bubble rises further, the upper surface contacting the quiescent liquid receives a relatively steady flow resis-
tance. On the other hand, the strong liquid jet underneath the bubble pushes its bottom surface upward into
the bubble (see Fig. 16 (s* = 1.0)), which results in the deformation of bubble shape. This bubble deforma-
tion then causes a change in the interface curvature and surface tension force. In principle, the surface ten-
sion force tends to keep bubble to a spherical shape. A high Reynolds number and high bubble acceleration
always indicate a strong liquid jet underneath the bubble. And, a high Bond number represents low surface
tension, thus an easily deformable bubble. Eventually, the relative strength between the liquid jet and the
surface tension determines whether the lower surface can pierce through the top of the bubble that forms
a toroidal bubble as shown in Fig. 16 (s* = 2.0), or just approaches the top surface and then recover back
to form a spherical cap bubble as shown in Fig. 15 (s* = 2.0,2.5). The toroidal bubble will keep on expand-
ing further in the radial direction (Fig. 16 (s* = 2.5,3.0)). Similar features of the formation of toroidal bub-
bles developed from spherical bubbles in viscous liquids were also reported in the experimental works of
Walters and Davidson [28,29].

The final bubble shape is highly related to the strength of liquid jet formed underneath the bubble,
which depends upon the balance of buoyancy force and flow drag resistance. Even though the net buoy-
ancy force is dependant upon the bubble volume, the drag resistance from the viscous liquid has strong
dependence upon the bubble shape. When bubble aspect ratio (H/W) is smaller (refer to Fig. 15), the flow
resistance on the bubble will be higher, and the bubble will rise at a lower speed forming a weak liquid jet
at the bubble bottom. And finally, a spherical cap bubble is formed. In the simulation cases A6 and B8



Fig. 15. The temporal evolution of velocity field, and flow speed distribution, and pressure field at interval of Ds* = 1 under the conditions
of Bo* = 116, Re* = 206.3, ql/qb = 1000, ll/lb = 100 and with initial bubble shapes of H/W = 0.59.
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reported in Section 3.2, the initial bubble shapes are assumed to be spherical, and toroidal bubbles are
predicted. In fact, the spherical cap bubbles were observed in experiments [1]. Through this study, it is
understood that the discrepancy between simulations and experimental observations is caused by the
assumption of initial bubble shape as spherical in the modelling. In the experiments [1,22], the bubble
was first hold by a hemi-spherical or cylindrical dumping cup with a relatively large size, and it was then
released by turning the cup. When the bubble size is small, it may remain spherical shape due to high



Fig. 15 (continued)
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surface tension force caused by high bubble surface curvature, even it is trapped in the dumping cup.
However, when the bubble size is large, the bubble will deform to ellipsoidal shape due to stronger buoy-
ancy force and lower surface tension force caused by smaller bubble surface curvature. Hence, the initial
bubble will have lower aspect ratio for experimental cases A6 and B8 in Section 3.2. Simulation results
shown in Fig. 15 clearly demonstrate that the present model can predict the bubble shape correctly as
long as the initial bubble shape assumption agrees with the experimental condition.



Fig. 16. The temporal evolution of velocity field, and flow speed distribution, and pressure field at interval of Ds* = 1 under the conditions
of Bo* = 116, Re* = 206.3, ql/qb = 1000, ll/lb = 100 and with initial bubble shapes of H/W = 1.31.
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3.4. The effect of Reynolds and Bond numbers on bubble rising

As discussed above, the Reynolds number and Bond number affect the bubble shape and the formation of
toroidal bubble. Generally, higher Reynolds number would induce larger deformation of bubble-shape in the
vertical direction due to the formation of a liquid jet beneath the bubble. On the other hand, the Bond number
controls the deformability of the bubble away from a spherical shape. Higher Bond number allows larger
deformation. The final bubble shape depends upon the relative strength of the flow forces and the surface ten-



Fig. 16 (continued)
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sion force, which are indicated by the Reynolds number and Bond number, respectively. Similar observations
have also been reported in Chen et al. [4].

3.5. The effect of density and viscosity ratios on the bubble rising

Fig. 17 shows the predicted bubble position and shape at time s* = 10 with different density ratios ql/qb of (a) 2,
(b) 5, (c) 20 and (d) 200, while other parameters remain the same (Re* = 8.75, Bo* = 116, ll/lb = 100). The var-
iation of bubble rising terminal velocity with density ratios is shown in Fig. 18. It can be seen from Figs. 17 and 18
that density ratio has little effects on final shape and terminal velocity of rising bubble when it is lager than 50.



Fig. 18. The predicted terminal bubble velocity varying with density ratios under the conditions of Bo* = 116, Re* = 8.75, ll/lb = 100 and
spherical initial shape.

Fig. 17. The predicted terminal bubble shape and position under the conditions of Bo* = 116, Re* = 8.75, ll/lb = 100 and initial spherical
shape, but different density ratios of (a) ql/qb = 2, (b) ql/qb = 20 and (c) ql/qb = 200.
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A theoretical analysis of Eq. (6) shows that effect of the density ratio is reflected as a factor (qb/ql � 1) in the buoy-
ancy force term. It is obvious that the value of (qb/ql � 1) is significantly affected only at the low density-ratio. The
effect of density ratio on bubble rising velocity is more significant than on terminal bubble shape.



Fig. 19. The predicted terminal bubble shape and position under the conditions of Bo* = 116, Re* = 8.75, ql/qb = 1000 and initial
spherical shape, but different density ratios of (a) ll/lb = 2, (b) ll/lb = 5, (c) ll/lb = 10 and (d) ll/lb = 100.
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Fig. 19 shows the predicted bubble shapes at time s* = 10 for different viscosity ratios (ll/lb) of (a) 2, (b) 5,
(c) 10 and (d) 100, while other flow parameters remain same (Re* = 8.75, Bo* = 116, ql/qb = 1000). Fig. 20
shows the variation of terminal bubble velocity with the viscosity ratio. It is found that the bubble shape
Fig. 20. The predicted terminal bubble velocity varying with viscosity ratios under the conditions of Bo* = 116, Re* = 8.75, ql/qb = 100
and spherical initial shape.
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and terminal velocity depend more on the viscosity ratio between bubble and liquid in the low viscosity
regime. The effect of viscosity ratio on bubble shape is stronger than on bubble velocity. As shown in
Fig. 20, the variation of bubble rising velocity is less than 10% when the viscosity ratio changes from 2 to 500.

4. Conclusions

A front tracking method for modelling two-phase fluid systems has been examined, improved and validated
for wider flow regimes. The new algorithm adopts the treatment of the interface with a finite thickness as pro-
posed by Tryggvason et al. The fluid properties (density, viscosity and surface tension) is varied smoothly over
the interface, and updated with the interface positions. The interface is advected using the velocity that is inter-
polated from the velocity field on the fixed background grid. The front mesh size is adapted to match the back-
ground mesh size due to its variation in front moving and deforming, and the front mesh position is corrected
to conserve the volume enclosed. The velocity field has been solved with the finite volume method over the
fixed grid using the volume flux conservation based SIMPLE algorithm. Compared with the projection
method, this new algorithm avoids directly solving the pressure equations. It enhances the numerical stability
and simulation robustness for large density/viscosity jumps across interface with about thousand times differ-
ence. It therefore provides a widely feasible simulation tool for more practical multiphase and interfacial flow
applications.

The newly proposed algorithm is applied to simulate the rising of single bubble in a viscous liquid. The bub-
ble shapes and velocity in a wide flow regime are studied as a function of the non-dimensional parameters such
as Reynolds number, Bond number, density ratio and viscosity ratio. The comparison of simulations with the
available experiments shows satisfactory agreements. In addition, the history of a bubble-rise from the various
initial bubble shapes to the terminal shapes is also simulated to understand the mechanism that governs the
bubble shape development. The effects of density and viscosity ratios between two fluids on bubble shape
development are also analysed.
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